What I got from The Schrödinger Sessions II: Physics for Science-Fiction Writers, Fifth Installment

What I got from The Schrödinger Sessions II: Physics for Science-Fiction Writers, Fifth Installment
JULY 28, 2016 to JULY 30, 2016

jqi-logo
http://jqi.umd.edu/Schrodinger-sessions-II

I have over thirty pages of notes and comments. Not going to put them all in one post, so here is the fifth installment. Look for others starting August 8, 2016: http://www.sallyember.com/blog

For any terms or concepts I don’t define or which I define poorly, please refer to: http://www.physicsoftheuniverse.com/glossary.html

I don’t have any more than what I’m posting, here. Physicists: please add, comment, correct, elaborate, explain! Thanks!

NOTE: the superscripted and subscripted numbers and letters won’t copy/paste correctly here; sorry.


Session XII, Professor Fred Wellstood, Ph.D.
Superconductivity and Nanophysics

A. zero resistance, persistent currents, flux quantization, Meissner effect, penetration depth, critical field, magnetic levitation to be covered, here

B. zero resistance to electric current

C. persistent currents Faraday’s Law = changing magnetic flux causes voltage (current)

D. Lenz’s Law = current generates a field that opposes changes in the applied field

E. “trapped current never decays if kept cold”

F. MRIs have superconducting magnets

G. flux quantization quantum flux flattens out the waves because the flux is “quantized” when trapped current produces a trapped magnetic field which creates the flux quantum integer

H. flux = inductant x current

I. perfect conductors do exist

J. Meissner effect = expulsion of the magnetic field because it is cooled and becomes perfect diamagnetism

K. London penetration depth = the surface current keeps the magnetic field on the surface

L. magnetic levitation they did several demos of this with magnets and supercooled substances that kept the magnets floating around, going around on a kind of marbles’ maze track, but above it

M. magnetic fields can be too small or too strong/have too large of a magnetic field, and then they are no longer superconductors

N. several types of superconductors exist

O. Type 1 superconductor is the most commonly used
Type 2 superconductor is the most commonly found

P. Type 2 superconductors can get their magnetic fields “trapped” inside and hang suspended and fly around the rollercoaster of the magnets (saw demos!)

Q. Absolute Zero = -459◦F

R. H2S is Hydrogen DiSulfide
H3S is Hydrogen TriSulfide
both are superconductors

S. Columb repulsion electrons repel other electrons and attract positive ionic lattice (crystalline). The lattice stretches and becomes composed of phonons

T. another electron travels close to the lattice (see above) because it is attracted by a free electron‘s positive charge in the lattice (the stretched phonons) and so it “pairs up” with that electron

Session XIII: Steve Eckel, Ph.D. NIST & JQI

A. cold/ultracold neutral atoms

B. did demos with liquid Nitrogen (ultracold)

C. dry ice is about -100◦F (made of CO2)
liquid Nitrogen is about -300◦F, or 77◦K

D. Absolute Zero is 0◦C
room temperature is usually around 300◦K

E. outer space is about 1◦K

F. the Joint Quantum Institute‘s labs have materials kept (through laser cooling) at about 10 to the -100 billions of 0◦K

G. laser cooling technology is what three professors here won the Nobel Prize for (one is presenting later in these seminars)

H. e = the excited state
g = the ground state
of an atom’s energy

I. evaporative cooling is the technique used

J. inertial navigation

K. GPS devices will have clocks that use cold atoms, soon

L. “atomic” clocks already do (see K, above)

M. atom laser is the same as a photon laser in that both have a monochromatic phase with coherent emissions

N. interfering laser beams can create crystalline lattices to simulate quantum problems

O. chirality = the direction current is flowing in a spiral (4 types of chirality: down, counter-clockwise; up, counter-clockwise; down, clockwise; up, clockwise)

P. the number of spiral arms is the winding number of superfluidity substance/atoms

Session XIV, Raban Sundrom, Ph.D.
Theoretical Physics

A. Photon vs. phonon
when discussing gravitational waves, which are they?
GW have to be photons because they are traveling through no medium (outer space)

B. didn’t discuss wormholes (but I wished that someone had!)

C. massless neutrinos also travel at the speed of light

D. magnetic statics are at an equilibrium because of the reliability of waves of electromagneticism as slower than the speed of light

E. “dancing” electromagnetic waves

F. without time, “physics is merely space and locations of objects,” statically

G. dynamics means that things change, can be predicted and retroactively understood because of time
if we add the square root of negative 1 (an imaginary number, i) to time, all the physics equations suddenly “work”!!

H. a medium exists if the particles/waves possess observable/measurable rest frame. If “yes,” then “yes.”

I. anti-matter must exist as a corollary of quantum mechanics and relativity; quantum vacuum
a worldline oi a body’s locations over time, which can be observed by measuring /connecting “dots” and then collect all the worldlines as its “history” (e.g., an object starts somewhere at 9 AM; go to 5 PM; show every location for that object in each minute, then connect those dots into one “line” = that object’s day’s worldline)

J. if we do that with matter and then show that anti-matter meets up with the matter again at 9 AM by “time-traveling,” that is the object’s annihilation point, when the past “self” meets up with the future “self” and they collide

K. energy cost is represented by Einstein’s General Relativity equation E = mc2 (squared) where E is energy, m is mass and c is the speed of light, squared.

L. positron is an electron with positive charge because it goes backward in time (!?!)

M. bariogenesis (“heavy starts”) is posited to be the origin of matter

N. quantum vacuum: photons are their own anti-particles, but positrons and electrons are the lightest mass anti-matter/matter pair that exists (briefly) and shows that space isn’t “empty”

O. [I had to leave at this point….He continued for about one more hour. Anyone have notes?]


END OF DAY TWO


See below for more information about The Schrödinger Sessions.

Who was in charge?
Coordinators:
Chad Orzel, Union College
Emily Edwards, JQI
Steve Rolston, JQI

Organizing Institutions
Joint Quantum Institute (JQI)
National Institute of Standards and Technology (NIST)

Sponsoring Institutions
This workshop was made possible by a Public Outreach and Informing the Public grant from the American Physical Society (APS) and support from the National Science Foundation (NSF)

Location
Joint Quantum Institute
2136 Physical Sciences Complex
University of Maryland
College Park, MD 20742
USA

How did I get to go?
I applied in March and was accepted in April!

The Schrödinger Sessions II was the second of two (first was 2015) three-day (2.5 days, really) sets of seminars, Physics for Science-Fiction Writers, offering a “crash course” in modern physics for non-scientists who utilize physics and other sciences in our work and wish to do it better. It was held at the Joint Quantum Institute (JQI), one of the world’s leading research centers for the study of quantum mechanics. [The organizers kept their promises to] introduce participants to phenomena like superposition, entanglement, and quantum information through a series of lectures by JQI and NIST scientists and tours of JQI laboratories. [They most certainly DID] inform and inspire new stories [and sharing information, like this] in print, on screen, and in electronic media, that will in turn inspire a broad audience to learn more about the weird and fascinating science of quantum physics and the transformative technologies it enables.

The workshop was held at JQI from Thursday, July 28 through Saturday, July 30, 2016. Participants were housed locally at a university dorm with breakfast offered at a dining commons near the dorm and lunch provided at the workshop, which was at the Physical Sciences building. Evenings were free to allow participants to explore the Washington, D.C. area (but I was much too tired at each day’s end to do any exploring).

Participants were selected on the basis of an application asking about personal background, interest, and publication history. [Organizers worked] work to ensure the greatest possible diversity of race and gender as well as type of media (print, television, etc.) with an eye toward reaching the broadest audience. Applications were accepted online from March 1 through March 20, 2015, and acceptance decisions were made around April 15, 2015.

FYI: Next year, 2017, JQI plans to offer a similar seminar for a different professoinal group, Physics for Journalists, and then, pending funding, re-offer this same session as I attended, Physics for Sci-Fi Writers, in the summer of 2018.

Watch this space for more of my notes, reactions and ideas catalyzed by these great seminars, after 8/8/16! http://www.sallyember.com/blog